pandas分组

news/2025/2/2 19:54:46 标签: pandas, 大数据

分组

分组的关键要素是:

分组依据、数据来源、操作及其返回结果。

df.groupby(分组依据)[数据来源].使用操作

对学生按照性别统计身高中位数。

print(df.groupby('Gender')['Height'].median())

上面是一维度进行分组,如果要根据多个维度分组,则只需要传入相应列名构造的列表即可。

例如,按照学校、性别统计身高的中位数。

print(df.groupby(['School', 'Gender'])['Height'].median())

如果希望通过一定的复杂逻辑来分组,例如根据学生体重是否超过总体均值来分组,同样还是计算身高的中位数。

print(
    df.groupby(
        df['Weight'] > df['Weight'].mean()
    )['Height'].mean()
)

print(
    df.groupby(
        df.iloc[:,5] > df.iloc[:,5].mean()
    )['Height'].mean()
)

通过ngroups属性,可以得到分组个数:

gb = df.groupby(
        df.iloc[:,5] > df.iloc[:,5].mean()
    )
print(gb.ngroups)

通过groups属性,可以返回从组名映射到组索引列表的字典:

res = gb.groups
print(res.keys())

groupby对象上表示统计每个组的元素个数:

print(gb.size())

通过get_group方法可以直接获取所在组对应的行,此时必须知道组的具体名字:

print(gb.get_group(True).head())

分组的三大操作:聚合、变换和过滤,分别对应aggtransformfilter函数及其操作。

聚合

返回标量

内置聚合函数

包括如下函数:max/min/mean/median/count/all/any/idxmax/idxmin/mad/nunique/skew/quantile/sum/std/var/sem/size/prod

gb = df.groupby(
        'Gender'
    )['Height']
print(gb.idxmin())

agg方法

groupby对象虽然定义了很多方便的函数,但是有以下缺点:

  • 无法同时使用多个函数
  • 无法对特定的列使用特定的聚合函数
  • 无法使用自定义的聚合函数
  • 无法直接对结果的列名在聚合前进行自定义命名
使用多个函数

当使用多个聚合函数时,需要用列表的形式把内置聚合函数对应的字符串传入,先前提到的所有字符串都是合法的。

gb = df.groupby(
        'Gender'
    )['Height']
print(gb.agg(['sum', 'idxmax', 'skew']))
对特定的列使用特定的聚合函数

对于方法和列的特殊对应,可以通过构造字典传入agg中实现,其中字典以列名为键,以聚合字符串或字符串列表为值。

gb = df.groupby(
        'Gender'
    )
print(gb.agg({'Height':['mean','max'], 'Weight':'count'}))
使用自定义函数

可以在agg中使用具体的自定义函数,需要注意传入函数的参数是之前数据源中的列

gb = df.groupby(
        'Gender'
    )['Height']
print(gb.agg(lambda x: x.mean()-x.min()))
聚合结果重命名

如果想要对聚合结果的列名进行重命名,只需要将上述函数的位置改写成元组,元组的第一个元素为新的名字,第二个位置为原来的函数,包括聚合字符串和自定义函数。

gb = df.groupby(
        'Gender'
    )['Height']
print(gb.agg([('range', lambda x: x.max()-x.min()), ('my_sum', 'sum')]))

对一个或者多个列使用单个聚合的时候,重命名需要加方括号,否则就不知道是新的名字还是手误输错的内置函数字符串。

变换和过滤

换函数的返回值为同长度的序列,最常用的内置变换函数是累计函数:cumcount/cumsum/cumprod/cummax/cummin,它们的使用方式和聚合函数类似,只不过完成的是组内累计操作。

过滤在分组中是对于组的过滤,而索引是对于行的过滤,在第二章中的返回值,无论是布尔列表还是元素列表或者位置列表,本质上都是对于行的筛选,即如果符合筛选条件的则选入结果表,否则不选入。

组过滤作为行过滤的推广,指的是如果对一个组的全体所在行进行统计的结果返回True则会被保留,False则该组会被过滤,最后把所有未被过滤的组其对应的所在行拼接起来作为DataFrame返回。

gb = df.groupby(
        'Gender'
    )['Height']
print(gb.size())
print(gb.filter(lambda x: x.shape[0] > 100).head())

Joyful-Pandas-课程详情 | Datawhale


http://www.niftyadmin.cn/n/5840258.html

相关文章

Vue 与 Electron 结合开发桌面应用

1. 引言 1.1 什么是 Electron? Electron 是一个使用 JavaScript、HTML 和 CSS 构建跨平台桌面应用程序的框架。它结合了 Chromium 渲染引擎和 Node.js 运行时,使得开发者可以使用 Web 技术创建原生桌面应用。1.2 为什么选择 Vue.js 和 Electron? Vue.js 是一个渐进式 JavaSc…

架构技能(四):需求分析

需求分析,即分析需求,分析软件用户需要解决的问题。 需求分析的下一环节是软件的整体架构设计,需求是输入,架构是输出,需求决定了架构。 决定架构的是软件的所有需求吗?肯定不是,真正决定架构…

WebForms DataList 深入解析

WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…

JavaScript 入门教程

JavaScript 入门教程 JavaScript 入门教程引言学习 JavaScript 的好处常见的 JavaScript 框架和库 安装开发环境下载并安装 Node.js 和 npm安装常用开发工具(如 VS Code)配置本地开发环境 基础语法入门数据类型变量与常量运算符算术运算符比较运算符 条件…

model.eval() model.train()

本文由AI生成 在 PyTorch 中,model.eval() 是一个非常重要的操作,它将模型的模式切换为评估模式(evaluation mode)。这与训练模式(training mode)有所不同。在不同模式下,模型的行为会有所变化&…

LeetCode:279.完全平方数

跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:279.完全平方数 给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。 完全平方数 是一个整…

【Java异步编程】CompletableFuture实现:异步任务的串行执行

文章目录 一. thenApply():转换计算结果1. 一个线程中执行或多个线程中执行2. 使用场景说明 二. thenRun():执行无返回值的操作1. 语法说明2. 使用场景说明 三. thenAccept():消费计算结果1. 语法说明a. 前后任务是否在一个线程中执行b. 要点…

基于 STM32 的智能电梯控制系统

1. 引言 随着城市化进程的加速,高层建筑日益增多,电梯作为垂直交通工具的重要性愈发凸显。传统电梯控制系统在运行效率、安全性和智能化程度上已难以满足现代需求。智能电梯控制系统能够实时监测电梯的运行状态、乘客需求,并根据这些信息优化…